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Abstract
The task of probing a medium for an inclusion is cast as a

signal detection problem. A sufficient statistic is developed for
determining the existence and location of an inclusion. The anal-
ysis shows the human limitationsof palpationwhen using a probe
and the limitations imposed by a haptic display either when emu-
lating such an environment or when relaying related information
in a teleoperated system. Force calculations using FEM mod-
els were compared to data measured from constructed gels. Psy-
chophysics experiments demonstrated promising results for the
playback of the FEM data.

1 Introduction
Palpation is a procedure frequently employed by physicians

to examine tissue using the sense of touch. This technique can be
used to distinguishdiseased tissue from healthy tissue or to locate
hard inclusions, such as tumors, for treatment. Palpation remains
important because it is a fast, easy, and cost effective means to
perform a diagnosis in many cases.

Understanding the mechanics and psychophysics of palpa-
tion can help determine the limits of human ability and the re-
quirements of a haptic display for the task. It is importantnot only
to finding the relationships between various loading parameters
(i.e., displacement vs force and/or shape vs pressure distribution)
but also how these relationships are perceived by an observer.

In this paper, palpation for inclusions is formulated as a sig-
nal detection problem in the presence of noise. All the useful in-
formation in an observed vector-valued function is summarized

into a single scalar-valued sufficient statistic whose probability
distributionunder different conditions is known. Comparision of
this statistic to a threshold value, which depends on the degree
of confidence in the hypothesis, permits the detection of the in-
clusion. This approach was developed as a simple approxima-
tion to how humans may perform this task, but the concepts are
amenable to the problem of automated palpation.

Another goal is to compare the playback of simulated and ex-
perimental data of palpation on a haptic display to understand the
limitations of using such a display in a palpation simulator or a
teleoperator. Analysis from the signal detection viewpoint places
minimum bounds on the quality of the haptic display.

Several groups have already addressed some basic issues
in this area. A short list of some relevant references to gen-
eral issues in human perception and in haptic interfaces follows:
Jones (1998), Fearing et al (1997), Salcudean (1997), Srinivasan
and LaMotte (1995), Cohn et al (1992), Lederman and Browse
(1988), and Loomis and Lederman (1986).

Howe et al have contributed much work regarding palpation
teleoperators, through which a user can remotely make a diagno-
sis (Howe et al (1995), Peine et al (1998)). Much of the work
describes psychophysics experiments determining specifications
required of the sensor and display technologies in order to have
effective palpation. Discussion of this application to minimally
invasive surgery (MIS) is given by Tendick (1997).

Research in the area of virtual reality palpation training sim-
ulators is described by Burdea et al (1998) and Langrana et al
(1997). The simulator consists of the Rutgers Master II force
feedback device and a graphical user interface to provide visual



feedback of the user hand location relative to the patient.
Finite element methods (FEM) of palpation to predict tissue

response to loads are used by Wellman and Howe (1997) and by
Langrana et al (1997). Many researchers are using FEMs because
they are ideal for addressing the problem of solving partial differ-
ential equations for tissues with nonlinear anisotropic properties
and complicated geometries.

Tools for automatic palpation are described by Dario and
Bergamasco (1988) and Bicchi et al (1996). Scilingo et al (1997)
conducted experiments with a haptic display for simulating sur-
gical tissues. The method described by MacLean (1996) for au-
tomatic environment characterization for haptic playback may
readily be adapted to quickly estimate complicated tissue me-
chanical properties.

The remainder of this paper is organized as follows: In sec-
tion 2, palpation is formulated as a signal detection problem
in which a scalar-valued sufficient statistic is derived from the
vector-valued response signal. The generation of probe force re-
sponse data, both calculated from a 2D FEM model and measured
using from a force/torque sensor, is described in section 3, fol-
lowed by results from psychophysics experiments in section 4.
The discussion of results and future work is presented in sec-
tion 5.

2 Probing for inclusions: a signal detection problem
Figure 1 shows an example in which a probe is used for in-

clusion detection. The probe can be indented into the gel surface
and moved laterally while reaction forces are perceived by a user.
A rigid probe is used so that a better comparative study can be
performed with a haptic display providing only kinesthetic feed-
back. Although this results in a loss of tactile information, as dis-
cussed by Lederman and Klatzky (1999), detection can still be
performed because active lateral motion of the probe is permit-
ted to observe changes in compliance under the probe.

Figure 1. Phantom models

The task of finding the inclusion may be viewed as a signal
detection problem, as illustrated in figure 2. In general, the deci-
sion as to whether or not a signal is present depends on four fac-
tors: (a) prior informationavailable before the stimulus; (b) infor-
mation about the stimulus; (c) information about the sensor; and

(d) the cost of each outcome. A more detailed discussion about
general signal detection theory is given by Egan (1975).

Figure 2. Signal detection problem

Even in our simple model, the ability to detect the inclusion
will depend on many parameters. For the inclusion, these include
the size, depth, and material properties (larger, more shallow, and
stiffer inclusions are more easily detected). For the probe, the size
and force/motion range are important (inclusions are easier to de-
tect when the probe is smaller or more deeply indented into the
surface). For this detection problem, it is assumed that all these
parameters are fixed so that an accurate force response curve can
be generated from the commanded trajectory. Given a suitable
model for the noise in the perceived force, the task is to deter-
mine a sufficient statistic and then establish a threshold for this
statistic for varying levels of confidence in being able to detect
the inclusion.

In the figure, X
�
t � is the probe trajectory, F

�
t � is the resulting

force on the probe from the environment, and Fp
�
t � is the force

perceived by the observer. As a crude simplification, Fp
�
t � may

be viewed as a version of F
�
t � corrupted by an additive Gaussian

noise signal, WF
�
t ��� N

�
0 � KW � (i.e., WF

�
t � is zero-mean vec-

tor, normally distributed with covariance matrix KW which gives
a measure of the noise spectral power density). WF

�
t � can include

effects such as sensor noise, surface slip, surface texture, sensor
quantization, material or sensor hysteresis, vibration, nonlinear-
ity or other modeling errors. The assumption of a Gaussian dis-
tribution allows for easier analysis and for a worst-case scenario.
The noise along each of the directions can reasonably be assumed
to be independent so KW � diag

�
σ2

x � σ2
y � . For simplicity, we con-

sider the case of a constant depth d and constant velocity v probe
trajectory: X

�
t � ��� vt d � T

Identify the state that no inclusion exists as H � 0 and that
an inclusion exists as H � 1. To gain a better understanding, first
consider the case of determining whether or not an inclusion ex-
ists at the lateral position x � 0. In this case, for each of the con-
ditions on H, the expected environment force response F

�
t � can

be readily determined (either from FEM calculations or experi-
mental measurement):

F
�
t � �

	
F0
�
t � if H � 0

F1
�
t � if H � 1

(1)

If a decision had to be made based on one component of the
vector signal, a matched filter could be used. Consider the x-



component first and define:

hx
�
t � � F1x

� � t � � F0x
� � t ��

F1x
� � t � � F0x

� � t � � (2)

where the function norm is given by
�

f
�
t � � � ��� f 2 � t � dt � 1

2 (for
convenience, this norm will also be normalized so that the units
of
�

f
�
t � � are the same as those for f

�
t � ; this means making t a di-

mensionless variable). Defining a new signal by the convolution
Yx
�
t � � � Fpx

�
t � � F0x

�
t � ��� hx

�
t � , then the evaluation of this func-

tion at t � 0 provides a sufficient statistic to make the decision.
Using (1) yields:

Yx
�
t � �

	
WFx

�
t ��� hx

�
t � if H � 0�

F1x
�
t ��� WFx

�
t � ��� hx

�
t � if H � 1

(3)

If H � 0, then Yx
�
0 � � N

�
0 � σ2

x � (this statistic has the same
variance as WFx because hx

�
t � is normalized). If H � 1, then

Yx
�
0 � � N

���
F1x
�
t � � F0x

�
t � � � σ2

x � . Thus, comparing Yx
�
0 � to

some threshold value ηx, one can hypothesize the existence of
the inclusion. To include the information content from the y-
component, we similarly define the signal:

hy
�
t � � F1y

� � t � � F0y
� � t ��

F1y
� � t � � F0y

� � t � � (4)

and the vector function:

Y
�
t � �

	
hx
�
t � 0

0 hy
�
t ��
 � � Fp

�
t � � F0

�
t � � (5)

Then

Y
�
0 � �

	
N
�
a � KW � if H � 0

N
�
b � KW � if H � 1

(6)

where, for convenience, the vectors a �
	
0
0 
 and b �	 �

F1x
�
t � � F0x

�
t � ��

F1y
�
t � � F0y

�
t � � 
 have been introduced.

The scalar γ � � � b � a � T K � 1
W

�
b � a � � 1  2 is a measure of the

signal-to-noise ratio (SNR). Finally, we define the random vari-
able

Θ � � b � a � T K � 1
W � Y

�
0 � � b � a

2 � (7)

Θ is the scalar-valued sufficient statistic that contains all the use-
ful information from the vector-valued function Fp

�
t � for the de-

cision to be made. The variance in each of the components of
Y
�
0 � should determine their respective weightings in how reli-

ably they can be used and Θ takes this into account. The proba-
bility distribution of Θ, as illustrated in figure 3 for a few values
of γ, can be calculated to be:

Θ ���� � N � � γ2

2 � γ2 � if H � 0

N � γ2

2 � γ2 � if H � 1
(8)
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Figure 3. Probability distributions of the sufficient statistic (θ) for several

SNR (γ) values

Thus, our method of detection is to evaluate y
�
0 � from (5),

then θ from (7), and based on a threshold value η, make the hy-
pothesis :

Ĥ �
	

0 if θ � η
1 if θ � η (9)

(Note the subtle distinctionbetween random variables denoted by
uppercase letters, and observations denoted by lowercase letters;
Y
�
0 � and Θ are random variables whereas y

�
0 � and θ are the re-

spective observations of these variables.)
The value of η depends on which criterion is to be used. The

maximum a posteriori probability (MAP) rule would maximize
the probability of making a correct diagnosis. For the medical
procedure of locating tumors, a more appropriate test might be the
Neyman-Pearson (NP) criterion in which the false negative rate
(the probability of an error given the inclusion exists, denoted by
Pr
�
e �H � 1 � ) is specified and η is chosen to minimize the false



alarm rate (Pr
�
e �H � 0 � ). The dual problem is to maximize the hit

rate for a fixed false alarm rate. Figure 4 illustrates how each of
these rates can be traded off at the expense of the other for several
SNR values. Each curve can be derived by sweeping a vertical
line across the graph of figure 3 and specifying point coordinates
by the areas to the right of the gaussian for H � 0 (Pr

�
e �H � 0 � )

and to the left of the gaussian for H � 1 (Pr
�
e �H � 1 � ).            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4. Receiver Operating Characteristic curves demonstrating trade-

offs in error rates for several SNR (γ) values

A concrete example of determining a haptic display require-
ment using figure 4 would be to specify a minimum 95% hit
rate (Pr

�
e �H � 1 � �

0 � 05) and maximum 5% false alarm rate
(Pr
�
e �H � 0 � �

0 � 05). This point is marked on the graph and
requires γ � 3 � 3. If the force signal difference is roughly 0 � 5N,
then the overall noise level needs to be less than 0 � 5N � γ � 0 � 15N.
Using a nominal absolute force level of 1 � 6N, the human operat-
ing noise level is estimated at 0 � 1N (see Jones (1998)) so the hap-
tic display must introduce less than

� � 152 � 0 � 12 � 1  2N � 0 � 11N of
noise to maintain the required SNR, assuming the noise sources
are independent and their variances add. The haptic display error
variance due to quantization alone is given by σ2

e � ∆2

12 , where ∆
is the force resolution.

The results can be generalized to colored noise, for which
the covariance matrix is known, by using the standard method of
applying a whitening filter and reducing the problem to the one
which has already been solved.

The problem can also readily be modified to estimate the de-
tected inclusion location. If the inclusion lateral position is x �
xincl , then Y

�
v � xincl � would have the distribution specified in (6).

Without any noise, each component of Y
�
t � would be maximized

at t � v � xincl . Thus, (7) would be left as a function of t:

Θ
�
t � � � b � a � T K � 1

W � Y
�
t � � b � a

2 � (10)

Θmax would be the new sufficient statistic to answer the detection
problem and the value tincl such that Θ

�
tincl � � Θmax gives the es-

timated inclusion position as xincl � vtincl. The statistics for Θmax

are not the same as in (8) and they become much more compli-
cated but the overall result is that the test will be more conserva-
tive in the sense that Pr

�
e �H � 1 � will not increase (i.e. there is

an even lower chance that an inclusion will be missed).

3 Data Collection
Five phantom gel models were created for the signal detec-

tion problem. Each model was constructed from a wax block with
a 15 � 0mm deep well, 34 � 0mm wide and 59 � 2mm long, filled with a
silicone gel (GE RTV6166). A 0 � 5mm thick layer of rubber (Dow
Corning HS3) was added to protect the gel and provide a surface
which can easily be lubricated. In four models, a 30mm long,
6 � 4mm diameter latex tube was embedded in the gel at depths of
2 � 6mm to 8 � 6mm (in increments of 2mm) from the surface. The
fifth model had no inclusion and acted as a reference. A lubricant
(AHP, Inc. PAM vegetable oil spray) was applied to the surface
to reduce the effects of friction. In all the experiments, the rigid
probe is semicylindrical, 30mm long, and 13mm in diameter. The
reason for using cylindrical probes and inclusions is that it per-
mits a more appropriate comparison to the 2D FEM models.

3.1 Finite Element Method Data
Calculations using FEM models were used to predict all the

reaction forces under the various loads. A 2D FEM model of the
constructed gels was generated using the commercial software
package, Marc/Mentat. In the current model, dynamic effects
have been ignored and the interface between the probe and the
gel surface is frictionless. Further simplifying conditions are that
all the materials are linear, isotropic, and nearly incompressible
with a Poisson ratio of 0.49. The Young’s moduli were roughly
determined to be Egel � 5000N � m2, EHS3 � 1 � 8 � 105N � m2 and
Eincl � 1 � 2 � 106N � m2). Fixed displacement boundary condi-
tions were placed on the the gel where it meets the wax block.

As the probe is moved to depths up to 4mm and lateral posi-
tions up to 10mm relative to the origin, the forces per unit length
exerted on it were calculated and recorded. The force curves in
figure 5 were generated for the model with an inclusion 2 � 6mm
deep. Calculations were only performed for positive lateral posi-
tions and symmetry was used to determine the forces for negative
lateral positions. The qualitative features of the graphs are con-
sistent with intuition.

Figure 6 graphically shows how the model deforms under a
load from the probe. The mesh of the shaded circular inclusion
is visible and barely deforms because it is significantly more stiff
than the surrounding material.
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Figure 6. Deformation using FEM

3.2 Measured data
Data was collected with the setup in figure 8. Two linear

positioning stages allow accurate positioning of a 6 DOF ATI
Nano-force/torque sensor on which the semicylindrical probe is
mounted. Probe forces were measured at 1mm intervals in both
indentation depth and lateral position. The resulting lateral and
normal force components as a function of displacement for the
gel with the 2 � 6mm deep inclusion are shown in figure 7, which
should be compared to figure 5. The qualitative features are simi-
lar while the quantitativevalues are reasonably close, considering
that a simple model with very roughly determined material prop-
erties was used in the FEM calculations.

4 Psychophysics Experiments
Psychophysics experiments were performed on 10 human

subjects. There were 6 males and 4 females ranging in age from
20 to 30 years (mean 24.5 years). Two subjects were familiar with
the experimental procedure and apparatus.

The design of the experiments is summarized in figure 8. In
one experiment, the subject can interact directly with the gel us-
ing a probe attached at the index finger. Another test involves
the playback of the force data calculated using FEM models on a
haptic display. The last experiment uses the measured force data
from an instrumented probe instead of the FEM data.

In all of the experiments, forced-choice testing was per-
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Figure 7. Experimental Force curves for gel with inclusion 2 � 6mm deep
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Figure 8. Overview of psychophysics experiments

formed in which a pair of samples (of which, only one would con-
tain an inclusion) was presented to the subject, each for only 3
seconds. The subject had to guess which sample had the inclu-
sion. 30 trials for each of the four inclusion depths were tested
under all three experiments (360 pair-wise tests per subject, in to-
tal). The probability of correctly guessing from the pair can be
calculated as a function of γ using knowledge of the probability
functions in (8) and this relation is displayed in figure 9.

An Immersion Laparoscopic Impulse Engine controlled by
a PC operating under Linux was used for playback of data. The
force data for playback is stored in two matrices (one for the lat-
eral forces and the other for normal forces) with the rows and
columns associated with the depths and lateral positions, respec-
tively. Simple linear interpolation of the forces is used when the
operation is within the bounds of the data and linear extrapolation
is used outside these bounds.

Measurements of the forces applied by the haptic display
indicate that the standard deviation in the error of the force is
roughly 0 � 024N and this may become a dominant noise term for
the tangential force component. This noise is primarily due to
backlash and friction while quantization introduces only 0 � 5mN
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Figure 9. Probability of choosing correctly in pair-wise tests

of noise.

4.1 Direct Contact with Gels
In this experiment, subjects have a plastic mold placed on

the index finger to remove spatial contact information (Lederman
(1999)). The mold has a semicylindrical probe at the bottom, with
the same dimensions as the probe used in the collection of mea-
surement data. A brief training period was permitted in which the
subject probed each gel specimen. Mechanical limits prevented
the probe from being indented more than 4mm. A cloth screen
was used to hide visual cues. The raw data from these tests are
tabulated in Table 1 and graphically represented in figure 10.
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Figure 10. Inclusion detection rates for direct gel contact

4.2 Haptic Display Data Playback
Using the haptic display to interact with the virtual gels, sub-

jects performed the same pair-wise testing using FEM and mea-
sured data. A mechanical stop limited the amount of indentation

Table 1: Number of correct responses in 30 trials
Incl depth (mm) 2.6 4.6 6.6 8.6
sbjct 1/direct contact 30 28 27 27
sbjct 2/direct contact 30 30 28 23
sbjct 3/direct contact 30 29 20 21
sbjct 4/direct contact 28 25 18 16
sbjct 5/direct contact 27 26 23 19
sbjct 6/direct contact 30 30 27 17
sbjct 7/direct contact 23 19 18 13
sbjct 8/direct contact 30 30 30 19
sbjct 9/direct contact 30 30 29 23
sbjct 10/direct contact 30 28 27 22
Direct contact mean 28.8 27.5 24.7 20.0
sbjct 1/FEM data 30 30 30 21
sbjct 2/FEM data 30 30 29 25
sbjct 3/FEM data 30 29 28 16
sbjct 4/FEM data 28 29 24 20
sbjct 5/FEM data 29 25 20 17
sbjct 6/FEM data 29 29 27 15
sbjct 7/FEM data 27 23 18 15
sbjct 8/FEM data 30 30 27 20
sbjct 9/FEM data 29 24 21 16
sbjct 10/FEM data 30 28 29 24
FEM data mean 29.2 27.7 25.3 18.9
sbjct 1/measured data 30 22 24 18
sbjct 2/measured data 30 28 28 21
sbjct 3/measured data 28 27 19 15
sbjct 4/measured data 25 19 19 21
sbjct 5/measured data 29 24 23 18
sbjct 6/measured data 26 21 23 17
sbjct 7/measured data 17 15 19 18
sbjct 8/measured data 29 26 26 13
sbjct 9/measured data 26 21 22 15
sbjct 10/measured data 28 25 26 18
Measured data mean 26.8 22.8 22.9 17.4

to 4mm. Furthermore, sandpaper at the mechanical stop was used
to deter the subject from sliding the probe along this limit. A brief
training program was used to acquaint the subjects with the test.
The results are summarized in Table 1 and figures 11 and 12.

Figure 13 compares all three experiments. The error
bars give 95% confidence intervals for proportion (see Natrella
(1963)). The results from the direct contact and the playback of
FEM data are quite close.

5 Discussion and Future Work
Palpation has been framed as a signal detection problem and

a sufficient statistic has been developed. Use of the NP criterion
can establish the threshold on the statistic to minimize the false
positive rate under a specified maximum false negative rate. An
example was presented in which specified maximum error prob-
abilities determined the required SNR, which in turn bounded the
noise tolerated in the haptic display. Alternatively, the specified
SNR can determine the necessary indentation force to achieve a
sufficiently strong signal. These problems were solved for a set
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Figure 11. Inclusion detection rates for FEM data playback
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Figure 12. Inclusion detection rates for measured data playback

of fixed parameters but a more general approach would use prob-
ability distributions of these parameters (for example, when the
inclusions to be detected occur at different depths with differing
probabilities). It is not difficult to see how the problem may be
further modified to address other questions such as the maximum
inclusion depth or minimum inclusion size which can be accu-
rately detected.

The psychophysics experiments demonstrated similar results
between the playback of FEM data and the direct contact with the
true gels, with very close inclusion detection rates. However, the
results using the the played back measured data do not compare as
well. From figures 5 and 7, the differences may be explained from
the relative size of the tangential forces and/or the slopes of the
normal forces. Discrepancies with the direct contact experiment
may arise from several sources such as friction (which appears
to be significant in experiments but was ignored in the FEM) and
vision (the user could see the level of indentation with the haptic
display but not the true gels).

A rough analysis of the noise contributionscan be performed
using the noise estimates summarized in Table 2. Considering the
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Figure 13. Comparison of correct inclusion detection rates, using 95%

confidence intervals for proportion

case of the 6 � 6mm deep inclusion, playback of FEM data gave a
84% accuracy which, interpolating from figure 9, indicates that
the subjects are operating near γ � 1 � 45. The peak signal strength
for this inclusion is 340mN so the noise estimate from the psy-
chophysics experiments is 235mN. The noise estimate for the
FEM playback using the applicable noise sources from Table 2
is 170mN (dominated by the actuation backdrive friction), which
is reasonable given the confidence intervals. The noise estimate
for the direct contact case using the appropriate noise sources is
220mN (dominated by unmodelled contact forces).

Table 2: Noise estimates
Source Noise level
Sensor (ATI) 20mN
Actuation quantization (Immersion) 0 � 5mN
Actuation backdrive friction (Immersion) 140mN
Unmodelled direct contact (friction,

hysteresis, nonlinearity, etc) 200mN
Human perception (Jones (1998)) 93mN

Palpation using direct contact of the fingerpad to the sur-
face allows the mechanoreceptors to provide pressure distribu-
tion information and this makes the detection task much easier
than when using a rigid probe as described in the paper. The rigid
probe was used here so a better comparative study could be con-
ducted in our experiments. Modification of the approach to in-
clude complete tactile information rather than simply forces will
be done and this may be used to determine the specifications of a
tactile display.

The calculations using the FEM models compare well to the
measurements although very simple models were used. Future
work here includes the use of nonlinear anisotropic material mod-
els with complicated 3D geometries undergoing large deforma-



tions to provide more realistic tissue behavior. Studies should be
performed to determine how well humans can distinguish param-
eters such as inclusion depth, location, stiffness and size.

The model will become more complicated as our understand-
ing of the task grows. For example, a multiplicative noise model
may be more appropriate than an additive one in order to account
for Weber’s law in which the mechanoreceptor noise level grows
with the force level. Table 2 provides a preliminary look at vari-
ous noise contributions but a more detailed exploration of the na-
ture and significance of each source will be performed. Also, an
impedance model for the user in which the commanded trajectory
is tracked rather than followed may be more realistic.

Although the method was developed to understand human
palpation abilities, the signal detection approach may also prove
useful in automatic inclusion detection or augmented detection to
give an objective measure to the physician on the likelihood of a
tumor.
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